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Outline:
@ Nuclear interactions and electroweak currents: a review
@ Role of two-body currents in inclusive e/v scattering:
the enhancement of the one-body response

@ pn pairs in nuclei and the excess strength induced by
two-body currents

@ Summary
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| Akmal, Pandharipande, and Ravenhall (1998) |

S e ! n n
S0 O ] pr +A swoo---@---
< I . i
B S T N

20- -7 1

pyAvIS)
30y 008 016 024 032 04 Very Wea](
p(fm”)

@ v = yp(static) + vp(momentum dependent) — v(OPE)
fits large NN database with y? ~ 1
@ NN interactions alone fail to predict:

e spectra of light nuclei
e Nd scattering
e nuclear matter Ey(p)

@ 27m-NN N interactions
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@ |IL7 model: parameters (~ 4) fixed by a best fit to the
energies of low-lying states (~ 17) of nuclei with A < 10
@ AV18/IL7 Hamiltonian reproduces well:

e spectra of A=9—-12 nuclei (attraction provided by IL7 in
T = 3/2 triplets crucial for p-shell nuclei)

e low-lying p-wave resonances with J7=3/2~ and 1/2~ as
well as low-energy s-wave (1/2%) scattering
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Marcucci et al. (2005)
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@ Static part vy of v from =-like (PS) and p-like (1)
exchanges

@ Currents from corresponding PS and V' exchanges

jij(vo;PS) = IGE(QQ) (TZ‘ X Tj)zvps(kj) g;
k; — k;j
22— 2%
i J

-ki O'j'kj-i-i‘:,j

with vpg(k) = v (k) — 207 (k) projected out from vy
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@ Currents from v, via minimal substitution in i) explicit
and ii) implicit p-dependence, the latter from

;-1 = —1+ (1 4 0y - o) F5PitTiP)
@ Currents are conserved
a- [J0 4§D )+ = [T 4o+ p

contain no free parameters, and are consistent with
short-range behavior of v and V2™, but are not unique

@ EM current (and charge) operators also derived in
XEFT up to one loop (pastore et at. 2009-2013; Keling et al. 2009-2011)
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@ Isoscalar two-body current contributions small
@ Leading isovector two-body currents from OPE



JL EM charge operators

QEe/v
Scattering

=~ pscudovector coupling

(a) (b)

1 FP+ .

(a) =v]; B E 5 — included in TA
k. FS FV .

@ Crucial for predicting the CFF’s of 2H, 3H, 3He, and *He

@ Additional (small) contributions from vector exchanges
as well as transition mechanisms like pry and wny
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Viviani et al. (2007)
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Lovato et al. (2013)
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@ Charge-changing (C'C) and neutral (NC) weak currents
(ignoring s-quark contributions)

Jho =i+ %
e = —2sin’0w gl g + (1 - 2sin®0w) jb . + jL°
with j4 = j, &+ ij, and the CVC constraint
[Ta ) ]#72 ]:7; eazbjg
@ Contributions to two-body axial currents from 7 and p
exchange, pr transition, and A-excitation (g% )
@ Strategy: fix g% (or dr(A) in xEFT) by fitting the GT
m.e. in 3H B-decay
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Marcucci et al. (2012-2013)
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I'o(*He) s7!
EXP 1496(4)
SNPA(AV18/UIX) 1496(8)
YEFT* (AV18/UIX)
A = 500 MeV 1497(8)
A =600 MeV 1498(9)
A = 800 MeV 1498(8)

@ Chiral potentials (N3LO/N2LO) and currents lead
conservatively to

L(*H) = 399(3) sec!  T'(*He) = 1494(21) sec™*

@ Studies of weak transitions in light nuclei in progress
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@ Inclusive v/v (—/+) cross section given in terms of five
response functions

do G? Ik
m = W ? Voo R00+Uzz Rzz_v()z R02+Uzz sz:':vzy Rwy
Ra(g,w ~§j§ja wtma—Bp)f | 7(a,w) [ (] 7P (a,w) |)

@ In (e, ¢’) scattering, interference R., =0, jZ ~ (w/q)jg
and only Ryo= Ry, and R,, = Ry are left
@ Theoretical analysis via:

@ sum rules
e explicit calculations of R.s
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Response functions require knowledge of continuum states:
hard to calculate for A > 3

@ Sum rules: integral properties of response functions
@ Integral transform techniques

B(g,7) = /O ” dw K(7,0) g, w)

and suitable choice of kernels (i.e., Laplace or Lorentz)
allows use of closure over |f)

@ While in principle exact, both these approaches have
drawbacks
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Schiavilla et al. (1989); Carlson et al. (2002—2003)
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w;; GEp(q7w)

= Ca [(0] OL(@) Ou(@) [0)= | (0] Oafa) [0) ]

@ C, are normalization factors so as S, (¢ — o) =1
when only one-body terms are retained in O,

@ Direct comparison between theory and experiment for
inclusive (e, ¢’) problematic:

@ R,(q,w) measured by (e,e’) up 10 wmax < ¢
e present theory ignores explicit pion production
mechanismes, crucial in the A-peak region of Ry
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Schiavilla et al. (1989,1993)
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>

Lovato et al. (2013)
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JLab data on 2C forthcoming ...

@ Contribution for w > wpax estimated by assuming

R (q,w > wmax; A) x R (q,w;deuteron)

W exp-Hail !
o exp
1.0H° P
® P
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@ Large contribution from two-body currents
@ Comparison with experiment problematic
@ Small ¢ divergence due to choice of normalization
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J| Weak NC S,.(q) (transverse) sum rule in 12C
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Lovato et al. (2014)
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o-0VNC, b
o VNC, 12b
o0 ANC, 1b
o= ANC, 12b
o-oNC,1b |
e NC, 12b

@ Large increase (~ 30%) in the weak NC transverse
response R, due to two-body (2b) currents

@ Important interference effects in S,z between 1b and
2b (as well as among 2b) terms
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@ Direct calculation in 2H; calculation of Euclidean
response functionsin A > 3

- o — - RO&(Q? w)
E, _ d T(w—Eop)
@) = [ doo &, (0.%)

th

= (0] Ol (q)e ™ H=E0) 0, (q) |0) — (clastic term)

@ ¢ "(H=FEo) evaluated stochastically with QMC

@ AtT =0, E’a(q; 0) x S,(q); as T increases, Ea(q; T)is
more and more sensitive to strength in QE region

@ Inversion of E,(q; ) difficult; in EM case, Laplace
transform data instead
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Carlson et al. (2002)
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Ea(Q: T) = exp [T q2/(2 m)] EOt((L T)
and Er(q,7) — Z for a collection of protons initially at rest

@ The 7 > 0.01 MeV~'region sensitive to QE strength
@ Large enhancement of Ry in QE region
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Lovato et al. (2014)
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@ A-dependence of ASy=Sr — S
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A%G:N}Z[@+JLﬁm+hc} > i dim +

<m <m

@ Neglecting 3- and 4-body terms

At = Cr /ooo da tr [F(z;q) p" (a3pn)] ,, = /DOO de [ (z)

@ Scaling property p” (z;pn, T = 0) ~ R4 p?(x) and
similarly for T = 1 pn pairs with p? — p?’; hence
RA

I'(z) scales as ——————
Zpg+ N pg
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Forest et al. (1996)
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Jl Scaling of pair densities in nuclei
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300 MeV/c

After rescaling by R/ (Z p2 + N 1i2), the integrand I (z) is
about the same in all nuclei
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Wiringa et al. (2014)
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@ Large enhancement due to two-body currents in sum
rules of electroweak response functions

@ There is a direct link between this enhancement and
the short-range structure of pn pairs in nuclei

@ This short-range structure also drives the increase of
the one-body response due to two-body currents

@ Calculations of EM transverse response in “‘He show
an excess strength as large as ~ 30% in QE region

@ Calculations of NC (and CC) Euclidean response
functions in 12C are in progress
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